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NATTONAT. ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

APPLICATION OF WING-BODY THECRY TO DRAG REDUCTION
AT TOW SUPERSONIC SPEEDS

By Barrett S. Baldwin, Jr., and Robert R. Dickey
SUMMARY

A method is developed for extending to higher Mach numbers the region
of low drag attaslinsble for wing-body combinations by the use of the tran-~
sonic area rule. It is found that to a good epproximation, the drag
depends only upon the longitudinsel distributions of area and moments of
area about the verticel plane of symmetry parallel to the free-stresm
dilrection. The essential requirement of the method 1s that the longi-
tudinal development of the moments of srea be smooth and gradus].

Results of an experimental investigation conducted in the Ames 2- by
2-foot transonlc wind tunnel to test the theory are presented. The
results in essence confirm the predictions of the theory in that the zero-
117t wave drag of a wing-body configuration over a range of low supersonic
Mach numbers as well as st sonic speed 1s reduced when auxiliary bodies
are mounted on the wing.

INTRODUCTION

R. T. Jones has expressed the theory of wing-body wave drag at super-
sonic speeds in & form whilch 1llustrates the dependence of the drag upon
the longltudinal distributions of the cross-sectional ereas of the complete
configuration intercepted by planes inclined at the Mach angle of the flow
(see ref. 1). The derivation contains as a special case for a Mach number
of one the transonic area rule introduced by Whitcomb (ref. 2) wherein the
intercepting planes are normal to the longitudinal axis of the configura-
tion. It was concluded in reference 1 that the modification of a wing-body
combination in sccordance with the transonic area rule would generslly be
expected to result in drag reductians at near sonic speeds; however, it
was polnted out that, at higher supersonic Mach numbers, this modification
would sometimes result in drsgs greater than that of the original config-
uration. In reference 1 a method for contouring the fuselage of a wing-
body combination was presented whilch achieved drag reductlions at particular
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supersonic design Mach numbers, but only at the expense of increasing the
sonic-speed drag compared with that of the corresponding transonic-area-
rule configuration. Thus, it appears that the methods for minimizing wave
drag described in references 1 and 2, which are both based on the longl-
tudinal dilstributions of cross-sectional ares, are effective for only a
limited Mach number range. '

In the present paper, Jones' genéralized zero-1ift wave-drag formula
is re-examined in an attempt to develop a method for minimlizing the wave
drag of a wing-body combination over a wider range of Mach numbers.

ANALYSIS

Celculation of Zero-Lift Wave Drag

It has been pointed ocut in reference 1 that the transonic area rule
was predicted by the linear theory, but was discounted because basic
assumptions of the theory are violaeted in this spplication. It has been
suggested by Jones that other predictions of the linear theory which may
have been overlooked should be gystematized and investigated experimen-
tally. Thue, in the present analysis a possibly unwarranted emphasis is
placed on the formel predictions of the linear theory at Mach numbers near
one.

In reference 3 methode are given for calculating the zerodynemic
forces on airplane configurations utilizing very few assumptions other
than those needed for . linearization. An additionsl approximation is
employed 1n reference 1 to relate the supersonic zero-1lift wave drag of
a wing-body combination to the drage of a series of equivalent bodies of
revolution each of which 1s determined from the cross-sectional areas
intercepted on the configuration by a set of parallel Mach planes. The
result of reference 1 coincides with the more exact result of reference 3
at gonic speed, and the deviation with increasing Mach number 1s expected
to be small in a limited range of Mach numbers a@s long as the configura-
tion is a conventional monoplane type.

In the interest of obtaining a result in terms of famlliar geometric
concepts and to facilitate calculations, the method of reference 1, termed
the "Mach plane method,” will be employed here. This approximate theory
greatly simplifies the discussion of gross effects of variations in the
design of wing-body combinations.

As 8 preface to the development of the method of the present paper
for calculating drag, the Mach plane method will be briefly reviewed.
Symbols are defined in Appendix A.

A
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Mach plane method.- Consider a wing-body combination such as shown
in sketch (a). Tet x be the coordinate in the free-gtream direction,
¥y the spanwise coordi-
nate, and 2z ‘the remain- 2
ing Cartesian coordinste 1 A~
in the thickness direc-
tion, with the origin at
the center of the body. Yy~

A Mach plane can be
defined as a2 plane with
ite normal at an angle
of +tan-1(1/B) to the x
axis. Let (x',B,p) denote
the Mach plsne which inter~
sects the x axis at x! ~
and has the projection of
its normal on the y=

plene st an angle @ to |
the y axia. Let
s(x',B,9) be the area of Sketeh (a)

the projectiaon on the ¥z

plane of the cross-sectional area intercepted on the configuration by the
Mach plane (x',B,p). Then the drag of the configuration 1s the average
with respect to ¢ of the drags of the equivalent bodies of revolutlon
defined by the area distributions S(x',R,9).

A method inikroduced in reference 4 1s used in reference 1 to evaluate
the drag of each equivalent body of revolution. The varisble 06 is
deflned by the relstion

x' =L cos @ (1)

where 1 1s the length of the equivalent body. Then a set of quantities
An(B,p) ere defined as the coefficlents of sin nf in a Fourier series

os(x’
expansion of —%[-i{-m. Consequently the Ap(B,p) can be determined

from the relation

(o]
An(B,9) = %f os(x',8,9) gin(ng)de (2)
J ox!
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Finally, the drag of the configuration is given by

21
"sz in[An(ﬁ’CP)] ;42 (3)

n=1
Within the framework of the linear theory this result is valid only for
equivalent bodies of revoluticn with no discontinulties in the gradiente
of the aresa dlstributions.

It should be noted that unless all parts of the configuration lie
between the nose Mach cone and the forward Mach cone from the tail, the
equivalent body length, 1, will be greater than the actual body length
in some cases. However, by conslderstion of streamwise body extensions
of vanishingly small cross-sectional area, it can be seen that a constant
value of 1 equal to or greater than the length of the longest equivalent
body can be used in equation (1).

Series-expansion method.- In this sectlon the Fourier series coef-
ficients defined in equation (2) wlll each be expanded in a finite series
so that the drag formula can be expressed as a power series in powers of
B. This manipulation leads to an expressgion of the drag in terms of a
convenient set of geometric parameters whlch were not apparent in the Mach
plane method.

By the use of equation (1), equation (2) can be written as

22 /2 3s(x',8,9) sin(ng)
= - = 2l t
An(B,9) = - £ £ f = 2l ax
-1l/2
or after a paritisl Integration
2 /2
ba(,0) = (2) 2 [ s p0) O En 10 ax (%)
T /1 af x’ sin @
1/2

provided that éﬁgéiﬁﬁﬂﬁl and S(x',B,p) are zero at the nose and tail.”t
p.4

¥For a practical configuration where the area distribution is not
zero at the tall, the distribution of a Kérmén ogive having e base ares
end length equal to that of the configuration under consideration can be
subtracted fram 8S(x',B8,9) so that the resulting equivalent-body area
diatributions wlll be zero at the node and tall. The drag due to the
part removed can then be calculated by means of equation (2) rather than
equation (4). The choice of a Karmén area distribution insures that there
will be no interasction drag from the part removed as long as all configu-
ration parte lie within the Mach cone from the body nose and within the
forward Mach cone from the tall, as can be seen by the use of eque-
tions (2) and (3).
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The second factor of the integrand of equation (4) cen be expanded
xl
- in a finite series of powers of 3—/'2‘ given by

172 m=o

n-z
. a sin ns xt
. Qx‘) sin © = Z bm (‘m‘) 3 1122 (5)

where

bnm

(-1)<n‘:‘2> g%)!;m'bl for even va.lues_-1 (6)
—)m
2

(n-m—e ot of n-m

Lzero for odd values of n -m

-

Substituting equation (5) into (4) end interchanging the order of
- . sumnation and integration yields

n-2 A2 o /2 N
An(B,9) = Z bnm <7) = f S(x',s,cp)Q—/; dx', n2x2 (7
m=0 -1/2

At this point, a more explicit expression for S(x',B,¢) in terms of
the configuration geometry is needed for substitution in equation (7).
Let +(x,y) be the thickness distribution of the canfiguration inciuding
that of the body or bodies. It will be assumed that the distance of all
parts from the xy plane 1s small enough that S(x',ﬁ s@) can be approxi-
mated by

YE(X':ﬁ :CP)
S(X':B :(P) = t(x' + By cos @,y)dy (8)

Yl(xl ] Br(p)

where yi(x',B8,9) and yo(x',B,9) define the edges of the configuration

intercepted by the Mach plane ?x' »B,®) . Equation (8) represents a planar

approximation. Analogous expressions not involving this approximation

can be found and exploited, but only the planar case will be discussed in
% this report.

et o



subetitution of equation (8) into equation (7) yields

n-2 1/2 y2(x',8,0) x! m
An(B,0) = Z bnm() f f t(x' + py cos @,¥)dy 1/2> ax*, nz?2 (9)
m=0 x'=~1/z y=yi(x',8,9)

If it 1s understood that +t(x,y) is zero at points off the configuration rather than an analytic
continuetion of its form at pointe cn the configuration, the integratlons with respect to x' and
y cen both be taken from - —o to » &nd the order of integration interchanged. In addition, wlth
the pubstitution of ~x = x' + By coe 9, equation (9) becames

an(8,0) = nf bon (%>2§- fm fw t(x,¥) (E_-—ﬂll/_gﬂ)m ix &y, nZe (10)
- - Y=o X=m |

The quentity in perentheses vhich 1g rajged to the power m can be expanded by the bincmial
theorenm into

K = B

where
cf = (——7—,3 T (12)
Then substitutiné equetion (11) into equstion (10) yields g
n-a . E
An(p,0) =z m() f f Z( 1)"0‘“( ) By cos q’) t(x,y)dx dy &
i/e 1/2 =
=0 y=—00 X=-00 p=0 &
D




Upon interchange of orders of integration and summatlon, shortening of the intervel of integration,
end arbitrary grouping, this becomes

n-2

m
P 2 1/2 v4(x) m-p
2\ 2
An(B,0) = Z by E (-1)p'c'{§ ‘z’;’g ) (?> < f f t(x,y) yPay (z—}/:_é ax (13)
N=0 p=0 , x=-1/2 Y“‘YS(X) '
vhere y,(x) and y,(x) define the two edges of the configuration,

The quantity in brackets in equation (13) can be identified as the longitudinal dilstribution
of the pth mnoment of area of the configuration. This indicates that the dreg of the configura-
tion can he expressed entirely in terms of moment dlstributions (including the srea distribution
vhich correspands to p = 0).

The moment diatrlbutions can be defined as

Ya(x)
Mp(x) = f {x,y)yPay (1%)
Y=-¥5(x)

Substituting this in equation (13) yields

n-2 n ptz  nl/2 m-~p
o) = ) b ) (0P EE(B) [ wa()  ax sPeosiy (15)
=0 prO ' ~l/2

or interchanging the order of summatione ylelds

n2 ey pe /e m-p
An(p,9) = Z (-1)BsPeosPyp [_mz brm CP 'E (%) f MP(x)(TJ/Eé-D dx (16)
p=0 =p

-1/2

a8 the desired expanpion of the An(B,p)'s in powers of B.

=
2
s
5
g
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It can be seen in equation (14) that 1f the configuration has span-
wise symmetry, the odd moment distributions will be identically zero, and
the terms of equation (16) resulting from odd velues of p wlll be zero.
With streamwise symmetry of the moment distributions in addition, the odd
values of n and m would be eliminated. '

In the process of substituting equation (16) into Jones' drag equa-
tion, 1t is convenilent to define several new symbols.

n-z '
- p+a /2 m-p
o= ) b B2(2) [ w0 ) (17)
m=p -1/2
so that
n—2 . . e e - .
An(B,9) = Z (-1)PaPeos®p Inp (18)
p=0

Then [An(B,9)]1Z can be written ag

n-2 n-2 ) S .
[An(B,9) 1% = }Z }: (-1)Pr+P2 Inp, LnPZCOB(Pl+P2)(¢)B(Pl+p2)
D1=0 P2=0 '
or
g-2
2n-4 o 2
Ualp,@13= ) (T, g) v2 ) Tmpy Tn(aepy) [costest  (19)
g=o0 P1=q-n+2
q even . . }

where the odd values of q are ocmlitted because the terms resulting from
such values would not contribute to the drag.

In addition to Inp of equation (17), there are several other
quantities depending upon Inp which are notational aids. Let

Npq = <Ln, g)a (20)

Y
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and

Then

a-2
F)
Ing = 2 Z Inpy In(q-p1) (21)

Pi=q-0+2

2n-4
[4n(8,9)1% = ) (Mg + Tpg)eoslop? (22)

g=0
q even

Substituting this in equation (3) yields

21
D = pVZ Z Z (Nng + Ing)coslppddp

q even

or, 1f it is assumed that the series may be integrated term-by-term, this

becomes

Wwhere

V2 -] 21 ~4
D= ItpB Z i Z (Nng + Ing) Tgpd (23)
n=gs q_:O
q even
21

= .21; \'é‘ cosly do = qé—l:r, q even (2k)

Interchanging the order of summations in equation (23) results in

o 0

R o
_ "gv Z Jgp? Z n(Nnq + Ing) (25)
=O. n_g+4
z
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Let Ng be the quantity derived from Nng by

2 -3

Ng = Z n Nng (26)
and define Igq as
oo
Iq = E: n Ing (21

Then substituting these in equation (25) yields

D = % Z Tq(Ng + Ig)pd (28)

q:O
q even

as the desired expansion of the supersonic zero-lift drag formula in
powers of B.

From the foregoing, 1t 1s seen that each Ngq depends only upon the
longitudinal distribution of the moment of area of order q/2, whereas
each Ig depends on all moment distributions of order zero to [(q/e) -1].
Thus, each Ng represents a contribution to the drag from the moment dis-
tribution of order gq/2 alone, and each I, represents a contribution
resulting from the interaction of the first [(q/e) - 1] moment distribu-
tlons.

Aithough the question of convergence of the series of the foregoing
analysis has not been investigated in detall, several observetions and
practical hints for celculation can be offered.

The values of edch An(B,p) obtained by the series-expansion method
are identical to those obtained by the Mach plane method. Therefore, 1if
it iz sssumed that the drag of a confliguration can be calculated with suf-
ficlent accuracy by using the first N terms of the Mach plane method, 1t
follows that the interchange in order of summations by which equation (25)
is derived from equation (23) 1s valid for these terms. '

Tn the Fourler series analysis of JS(x',8,9)/dx' in the Mach plane
method, it is evident that the higher harmonics will be suppressed if the

- - e

1
M

-
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smallest allowed value of 1 1s used rather than a large value. Conse-
quently, the convergence of both the Mach plane and series-expansion
methods is best when the smallest allowed value of 1 1s used in equa-
tions (1) and (17). In either method the number of terms required to
obtain the major part of the drag can be held to e minimum, snd the
mathematical calculations thereby facllitated, by dividing the configura-
tion under comsideration into a short part and a long part. The quanti-
ties An(B,@) of the complete configurstion sre the sums of the corre-~
sponding quantities of the separate short and long parts zs given by the
relation

An(B,0) = Agn(B,®) + Arn(B,o) (29)

where the subscript S 1is used to denote short part and I long part.
Then [An(B,p)]1® 1= given by

[8n(B,9) 12 = [Asn(B,p) 1% + 28an(B,9)ATn(B,9) + [An(B,0)1® (30)

When this expression 1s substlituted in equatlion (3) 1t is seen that the
[Asn(B,®)12 will yield the drag of the short part alone, [Arn(B,9)1Z

the drag of the long part alone, and 2Agn(B,p)Ar,(B,p) the interaction
between the short end long parts. Then a smaller value of 1 can be
used to calculate the drag of the short part alone. Although no reduc-
tion in the value of 1 1is possible for the other two parts of the drag,
the convergence 1s improved becsuse of the absence of the high harmonic
content of the short part from Ar,(B,0).

The number of terms to be included in the drag formula will depend
upon the relative importance of accuracy and simplicity. In the search
for low-drag design crlterls, a very small number of terms might be
appropriate. As an example of the mesning of this remark, it can be seen
that only two terms need be considered to arrive at the supposition that
the Sears-Haack area distribution is an optimum for given length and
volume. Only one term 1s needed %o caonclude that the fineness ratio of
2 body should be as large as possible when the pressure drag alomne 1s
congidered.

A Method for Reducing Drag

The general problem which will be considered in this section is that
of designing a wing-body combination with low drag in a range of super-
sonic Mach numbers when certain basic parameters, such as total volume,
ere gpecified. In order to obtain definite answers, many additional
parameters such ag those involved in the speclfication of the wing plan
form must be assigned arblitrarily. For example, the wing can be chosen

il

T T Ty
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arbitrarily, and the optimum body shape for minimum zero-1lift wave drag iz
at & specified Mach number can be found by methods described in refer- .

ence 1.

If the number of parsmeters affecting the drag is small, as 1s the
case when the transonic area rule is valid, the general problem of drag
. minimization 1s greatly simplified. The series-expansion drag formula of -
the present analysis 1s also expressed 1in terms of a small number of
parameters if the higher powers of B can be neglected or 1f the suma-
tions over n cen be cut off at a small number. Because of the resulting s
simplification it has been found that the minimization procedure employed
in reference 4 can be used to design an optimm wing-body combination = —
with minimum drag at s Mach number of one and minimum drag rise at low
supersonic speeds. As a first application of the foregoing analysis this
procedure will be.described and exploited. The valldity of the result is
subject to some question because the basic assumptions of the linear theory
are violated at Mach numbers neer one. However, the results are of inter-
egt in the absence of a method for applylng a more exact theory.

For the ordinary case of spanwise symmetry, equation (28) can be .
written as -

2
D=“‘°g [No+%1252+g(N4+I4)B4+%16[36+

%55 (Ng + Ig)B% + 0(B"°)] ' (31)

In the speed snd aspect-ratioc range where g2 and higher powers of .
B can be neglected, the drag depends only upon the area distribution, o
since this is the anly feature of the geometry affecting No. It can be
assumed that the geometry will be such that the higher powers of B
should be taken into account succeseively as the value of B 1s increased.
Then in the speed range where powers of P greater than two can be neg-
lected, the drag depends only on the area distribution and the second-
moment-of-area distribution, since these two determine the value of Is.
As successlvely higher powers of B are teken intc account, correspond-
ingly higher ordered moment distributions are involved.

The following procedure is proposed for reducing the wave drag of a
wing-body configuration:

1. Minimize the drag at a Mach number of one by exclusive attention
to the area distribution. '

2. Minimize the drag at slightly higher Mach numbers by exclusive
attention to the second-moment-of-area distribution excluding 53

any changes which would alter the area distribution.
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3. Continue to £ind the optlimum higher ordered moment distributions
succesalvely without disturbing the lower distributions in
thelr previously derived optimum forms.

This procedure leads to a unigue set of moment distributions.

Substituting equation (20) into (26) with q = 0 ylelds
o0

No = Z n (Ino)® . (32

n=2

From equation (1) with p = 0, the volume of the configuration, Vo, is
identified as

Vo = Mo(x)dax (33)
-1/2
By the use of equation (17) with n = 2 and p = 0, the Pfirst term of
equation (32) is found to be proportional to (Vo/2%)“. Then, since all

the terms of equation (32) are positive, Ny is a minimum for given
values of Vg and 1 1f

Ino = O for n {2 (34)
To satisfy equation (34) and similar equations which will occur, =

rearrangement of equation (17) is needed. When the integral asnd sum of
this equation are reversed to obtain

n-2

p2 /2 m-p
w2 () [ w0 | ) k()
-1/2 .

m=p

gin nf *

aprt
x 1 sin 6
“(T/JH
with the aid of equetions (5) and (12) so that

’ o (o2 pt/2Mp(x) aP*™  sin ng =
Inp = E’(i) Jr p! x \P+1 sin @
~1/e 773

the quantity in brackets can be identified as

g [
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Then after (p+l) partial integrstions this beccmes

1/2 1

22 dP*t Mp(x)7 sin ne

Inp = = 7 f [ :] ax (35)
1 1)z dxP+: o1 gin @ .

provided that 3

o

a(P-a)  gin ne

dd
—_—M ] -
% \d p(x) ~ \p-q sin 6
1/%) /2
- x=1/2
(p-q)
‘ ad Mp(x a cin n6 Iy =0 (36)
d( X )q_ d( P~q gin @6
i : 1/2
L t/2 / J x==1/2 ‘.
for all integer values of q from zero to p. Equation (36) is satis-
fied 1f Mp(x) and the first p derivatives of Mp(x) are zero at .-

= x1/2.

It follows from equetion (35) with p = O that equation (34) ise

satisfled by
/ 2
-d?M‘.—xg = L2081D(%) = -2L20<ﬁ-§> 1l - <-z/i2> (37)

By integration and use of the fact that the configuration does not extend
beyond x = *1/2, this becomes

Mo(x) = 31 Lao [1 - (T’/ié)z]s/z (38)

For purposes of evaluating the drag, this area distribution can be put in

the form
Mo(x) = wolo) [1 - (Z5f [ (39) ,
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where Mg(o) 1s the maximum wvelue of the distribution. Then

Lo = 3 Yolo) (40)
rand
_ 9=x Mo(0) T2
D = T QV2 [ 7 ] (,'['1)

1s obtained as the drag of the optimum configuration in the speed range

where B can be neglected. Equations (39) and (41) are in agreement
with the results of references L and 5.

By substitution of equation (34) into equations (21) and (27), it
ig found that I, end I, willl be zero for a configuration with the opti-
mum area distribution and all other Ig's will be independent of the
area distribution. In that case equation (31) becomes

D =’£¥ 18 [M°§°)]2 + B NB + 2 TapS +

% (Ng + Ig)8° + o(Bl°)} (k)

In minimizing N,, 1t can be assumed that the second-moment distri-
bution of the body is negligible so that 1 can be replaced by 15, the
wing length. More exactly, 1 1is the length of the projectlon of the
wing on the body exis. Substituting equation (20) into (26) with q = b,

yields
N, = ;Z; n <?n%> (43)

The second-moment volume of the configuration can be defined as

laf2
Vs = f = Mo(x) dx (hk)

~lg/2
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By the use of equation (17) with p = 2, the first term of equation (L43)
1s found to be proportional to [Vo/(15)*12. Then since a1l terms of equa.-
tion (L43) are positive, N, 1s s minimum for given values of Vo and 1o -
if ' o

Ipe = O for n#b (45) .

It follows from equation (35) with p = 2 that this requirement 1s met by
setting '

"d'a—l;fgi)— = L4281n(,+e) (1|'6)

By triple integration asnd use of the sufficient requirement of equa-
tion (36) that My(x) and the first two derivatives of Mo(x) be zeroc at
X = £15/2, this becomes _ o e il L . L=

1 s < \2 T/2
Mp(x) = 105 (12)° Lao [1 - (?;75) ] (17)
or — =
< \2 7/2
Mo(x) = Mz(o)[l - (%;7é> ] (48)
is obtained as the optimum second-moment distribution. Then
Mo( o)
Lyz = 105 —g (49)
(12)

and by substitution of this in equations (42) and (43), the expression .

_ npv2 Mo(0) 2 [Mz(O) 24 )
D = —g— 18 [ 7 ] + 16537.5 (E;fsj B }- (50)

is obtalned as the drag of a wing-bedy combination for which the distri- -

butions of area and second moment of area are optimum when powers of

greater than four are neglected. .
The foregoing process can be continued indefinitely until a complete

set of optimum moment distributions is obtained. The results are .-
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- Mp(x) = Mp(o)[l - <7§‘ﬁ>2]p+(3/ ® (51)
- where
lo=1
lp=1a for p>2 T

and the drag of such a configuration 1s given by

£ 2
Lz N e depe | ip(e) ),
"8 ; (20)%(pr2) (-3 | (apypra| P %)
i P even

Since all the terms of equation (52) are positive, this drag and the
corresponding drag coefficlent must incresse monotonically with increasing
Mach number. Also since all the terms are positive it can be seen from
the first two terms that the drag will be very large at

gz = HolOle® (53)

Equation (53) can be used to estimate the upper limit of the Mach number
range of applicability of the foregoing low supersonic technique for drag
reduction. ’

It is interesting to note that a configuration designed according to
equation (51) would have large drag st the higher Mach numbers as = con-
sequence of eliminating the drasg components due to intersctions of the
moment distributions. Although the drag due to each moment distribution
alone must be positive, the interaction drags can be negative. The inter-

] ectlon drags which would be beneficisl in 2 given Mach number increment
- were eliminated in the process of minimizing the drag st lower Mach num-
bers.
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APPLICATIONS AND DISCUSSION

Design of Confliguration for Low Drag

In the "ANALYSIS" section, it has been shown that the wave-drag
formula can be expanded In a power series of the form

D=ag+8sB2+ a4t +. .. (54)

where the constants ag,az,84, and so forth, are independent of Mach number
and. are determined only from the geometry of the configuration. In this
section, the physical slgnificence of these constants will be discussed and
gome examples presented of the practical means available for minimizing the
constants in order to reduce the drag of wing-body combinations at low
supersonic speeds as well as at Mach number one.

The deteils of the procedure for deriving the constants from the
geometry using a planar approximation are contalned in the "ANALYSIS"
section and in Appendix B. Equations (17), (20), (e1), (26), (27), and
(28) indicate that, in general, ag depends only on the area disgtribution,
as depends upon the second-moment-of-area distribution as well as on the
area distribution, and a4 depends on the fourth-moment-of-ares distribu-
tion in addition to the previocus two digtributions. Hence 1t 1s seen that
the transconic area rule 1ls valid in the speed range where S is small so
that all terms except the first in equation (54) can be neglected. Fur-
thermore, it is expected that as the Mach number is increased, starting
from one, all except the first few terms should remain negligible in =
renge of low supersonic Mach numbers so that at these speeds the drag
should depend only upon the area distribution and the second-moment-of-
area dilstributlon. . : : :

If the configuration area distribution is made an optimum for minimum
drag at a Mech number of one by the use of the transonlic area rule, the
determination of 8- and a, is simplified. In that case ap 1s zero and
as depends only on the second-moment-of-area dlstribution. Consequently,
1f the second-moment-of~area dilstribution cen be variled without changing
the area distribution, the drag at low supersonic speeds can be minimized
wlth respect to such varistions without increasing the sonic speed drag
which depends only on the area distribution. In order to see that the
gsecond-moment distribution actually can be varied without changing the
area distribution, definitions of these distributions are needed.

The aresa digtribution is glven by

¥(x)
Mo(x) = 2 [ Y e(x,y)ay (55)
o 4
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where +t(x,y) 1s the thickness distribution of the configuration includ-
ing wing and body, and Y(x) is the value of ¥y at the edge of the plan
form. In this definition spanwise symmetry of the configuration has been
assumed.

The second-moment dilistribution can be spproximated by

Y(x)
M) =2 [ yEsxyay (56)
R(x)

where R(x) is the value of ¥ et the wing-body Jjuncture. Here the
second-moment dlstribution of the body is neglected because of the small
values of y at the body compered with those on the wing. Sinece the body
moments are negligible, changes in the body shape will vary the configura-
tion area distribubtion without altering the second-moment distribution.
Conversely, the second-moment dlstribution cen be altered while holding
the area distribution fixed by varying the wing geometry and the body
shape at the same time.

If the area and second-moment distributions are made optimum, the
drag can still be varied by altering the magnitudes of these diastributions,
as can be seen In the drag formula for such a configuration given by

D= ]91 WOV2 [‘.“mg_o_).] + 3%2 Tev2 [%2(2-%} g* + o(p®) (57

where Mo(o) is the meximum value of the area distribution, I is the body
length, My(0) is the maximum velue of the second-moment distribution, and
1> is the wing length.

Neglecting powers of P greater than four in equation (57) provides
an insight into the requlrements for reducing the pressure drag at low
supersonic speeds. The area-rule requirement that the ratio .Mg(o}/T %be
small Indicates that the fineness ratio of the body should be large as
previously noted. Exemination of the quantity Ms(o)/153 lesds to the
conclusion that not only should the thickneas ratio of the wing be small,
but also the thickness ratio should taper to a minimum at the wing tips,
end the ratio of effective streamwlse length to span of the wing should
be large. At higher Mach numbers, where the higher powers of g cannot
be neglected, these conclusions would not apply.

The ratio of effective length to span of a wing cen be increased in
several different ways, for example, by extending the wing chord. However,
large frictional drag penalties are usually assoclated with the inecreased
surface ares accompanying such changes. Another possible method of

@_“ N
5 i .
. . ]

—— O
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increasing the effective-length-to-span ratlio of the wing 1s by the addi-

tion of auxiliary bodles of revolubtion mounted on the wing. This method

has the adventage of relatively small increased surface area and attendant .-
friction drag. The hodles of revolution are particularly attractive in

the case of wing-body configurations of relatively large wing span where
application of the transonic area rule could be expected to produce drag .
penalties in the low supersonic speed region. )

As an 1llustration of the application of the drag-reduction proce- .
dure, hereinafter referred to as the "moment~-of-aree rule" as distin-
guished from Whitcomb's ares rule, consider the wing-body combination
shown in the upper part of sketeh (b). This configuration comsists of a

actual distribution

-------- optimum distribution
? Mo(x) Ma(x)
M .
—— {———— x A )
\V ~
i x X - a
¥ Mo(x)
:j#;:if>‘_:3
__< X
/\I X X
Sketch (b}

combination Sears-Haack-Kdrmdn ogive body of fineness ratioc 11, and an
elliptic-plan-form wing of aspect ratic 2.0 with clrcular-arc sections

and 5-percent maximum thickness ratio. The distributions of area and
second moment of area for this basic configuration are also shown in the
sketch., The shapes of these distribution curves are not conducive to low
drag in that the area distribution has a bump at the location of the wing
and ‘the moment-of-area distribution 1s short and has steep slopes. With
the total volume fixed, the optimum shapes of the distribution curves (as
defined by eq. (51)) are shown by the dashed lines.2 The desired distribu-
tion of the second moment of area can be obtalned by utilizing auxiliary

2The optimum second-moment distribution is not a function of Mach .
number because it 1s derived esgentially by minimizing the derivative -t
dcp/dp* evaluated at a Mach number of one.

»
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bodies. of revolution mounted on the wing as shown in the second psrt of
sketeh (b). The arbitrarily chosen spanwise location of the suxilisry
bodies determines thelr size In that small bodies &t an outboard position
can produce the same second-moment distribution as larger bodles at.an
inboard position. It 1s evident that in order to prevent an incresse in
the maximum value of the second moment of srea the auxlliary bodles must
be waisted in the vielnity of the meximum thickness of the wing. The
area distribution may be made optimum by reshsping the body to satisfy
the requirements of the transonic area rule after the auxiliary bodies
have been edded.

Tn discussing the effects of modificatlons 1t 1s convenient to iso-
late portions of the drag which will not be affected by the modifications
under consideration. Considering pressure drag only, the quantity of pri-
mary interest i1s the additional pressure Jdrag caused by all additions to
and alterations of the original body alone. The wing and auxillary bodies
are considered to be additions while the reshaping of the body is an
alteration. Another reason for isolating this additional pressure drag
(ACD) is that the basic assumptions of the linear theory used to calculate
ACp for configurations with the transonic-area-rule modification may not
be violated, although the assumptions are violated at Mach numbers near
one for the body alone (see ref. 3).

The additlonsal pressure drag as Just defined is obbalned by calcu-
lating the drag of a configuration consisting of the wing, the auxiliary
bodies, and the body cutout. The body cutout is taken to be a negative
area distribution located at the position of the body surface. The calcu-
lated values of ACp for the unmodifled configuration, snd the configura-
tion modified according to the moment-of=-sres rule are shown in sketch (c).

-016 unmodified /__f\\ 3
.012
AC area-rule -7 ™Y
D 008 modification
v .00k moment-of-area- - -
‘Tule modification
0}
1.0
M
Sketeh (c)
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For comparison, the calculated values of ACp for a configuration medi-

fled accarding to the transonic area rule only are also shown. A descrip-

tion of the methods employed in the calculations appears in Appendixes B 4
end C. The drag coefficlent is based on the total wing area including the

part of the wing hidden Inside the body. It is spparent that the additian

of the auxiliary bodies to make the second-moment-of-ares distribution an .
optimum repults in large theoretical drag redictions at low supersonilc

speeds. It is to be expected that the actusl drag reductions will be

samewhat less than those predicted because of the effect of friction drag .
not taken into account by the theory. :

Experiment

In order to obtain an experimental check of the theoretlical predic-
tions, models of the configurations under consideration were constructed
and tested in the Ames 2- by 2-foot transonic wind tunnel at a Reynolds
number of 1.9 million based on the wing root chord.

The experimentally measured values of the total drag coefficient at
zero 1ift for the configuratlons are shown in sketch (d).

O ummodified wing-body configuration

O ares~rule modification

{ moment~of-area~-rule modification

A ynmodified body slone
.02k~ ——— unmodified body alone (calculated)

.020

.016
Cp

012

.008

.00k4
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These results confirm the predictions of the theory in that the drag
of the configuration modifled by the use of auxlllary bodies is nesrly &s
low as that for the configuration modified by the area rule slone at a
Mach number of 1.0 and is less at higher Mesch numbers. The drag of the
configuretion with suxilliary bodles is greater at subsonic speeds than
that of the other configurastions because of the larger surface area.

The drag of the ummodified body alone is alsc shown in sketch (4)
together with the predicted supersonic value which is plotted as en incre-
ment above the experimental value of drag at low speeds. The poor agree-
ment is considered to result from a reduction of sgkin friction at super-
sonic speed due to an increase in the extent of the laminar Fflow gince at
supersonic speeds the extended reglons of falling pressure are conducilve
to delay of transition to turbulent flow.

The incremental drag rises with the body drsg excluded from the
experimental and theoretical values show much better agreement as can be
seen in sketch (e).

020 experiment
— = theory
0161
012} Il\ area-rule
ACD modification
1008 —
%: unmodified
¢OOL[' —
moment~of-ares-
o { | K N rule modification

.8 1.0 1.2 1.h

Sketeh (e)

The ACp values were estimeted from the experimental results by sub-
tracting the subsonlc drag of the configuration as well as the drag rise
of the original body alone from the total drasg of the configurestion. This
operation can be expressed &s:
NCp = Cp - ~ (CD ) - [C -
total tovel fs yoo.e Dbody alone

<CDb°dy alone)a_b M=0c.8 ]
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or

ACD = (%Dtotal - CDboiy along) - (?Dtotal - cDbody alone)at Meo.8

For the suxiliary bodles employed in the foregoing experimental
investigation, the assumption that powers of B greater than four can
be neglected in the drag formula is violated at Mach numbers above l.l.
Hence 1t 1s expected that modifications more effectlve in drag reduction
at the higher Mach mumbers can be found 1f this assumption is not used.
The geries-expansion method for evaluating the drag can be used to design
auxiliary bodies which will minimize the pressure drag at a specilified
supersonlc Mach number 1f the hlgher values of n are neglected rather
than the higher powers of g. The result would correspond to the fuse-
lage modification for minimum drsg at a specified supersonic Mach number
described in reference 1. ' o '

CONCLUDING REMARKS

A basic method for estimating the first-order deviations of the drag
of wing-body combinations from the values predicted by the transonic area
rule has been derived. In & planar approximation it bas been found that
at Mach numbers gbove one the zero-lift wave drag depends on the dlistribu-
tions of moments of area of the configuration about the vertlcal plane of
gymmetry parallel to the free-stream direction as well as on the area
distribution. Thus the area rule can be supplemented by what might be
termed a moment-of -area rule for extending to higher Mach numbers the
drag reductions associated with the use of the area rule at a Mach number
of one.

Just as 1s the case for the sares rule where the longitudinal develop-
ment of area must be smooth and gradual to minimize the drag, so also, In
application of the moment of area rule, the longltudinal development of
the moments of area must be smooth and gradual. It has been found that
at low supersonic speeds the moment-of-area distributions of order higher
than the second are of secondary importance. Significant drag reductions
can be obtained at these speeds by mounting bodies of revolution on the
wing for the purpose of improving the second-moment-of-area dlstribution.
Thie point has been verified by an experiment performed in the Ames 2- by
2-Foot transonic wind tunnel.

An alternative way to visuallze the mechanism of drag reduction by
this means 1s to regard the auxiliary wing-mounted bodies as local
pressure-field cancellation devices in the same sense that Jones and
Whitcomb employ the contoured principal body or fuselage to counteract
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the pressure Ffield for the entire wing. From this point of view, it
should be expected that the auxiliary-body modification would be most
applicable to configurations embodying wings of relatlively large span
where the area-rule effects would be limited because of the large dis-
tances of some of the wing elements from the fuselsge.

The concept of introducing suxllisry bodies along the wing spen to
effect decreases 1n wave drag promises to find important application for
aircraft intended to carry external stores. For such aircraft, the pos-
sibllity exists of shaping the stores according to the moment of area
rule s0 as to obtain drag reductions at transonic speeds with no friction

penalty at lower speeds.

Ames Aercnautical Leboratory
National Advisory Committee for Aeronsutics
Moffett Field, Calif., Oct. 19, 195k
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APPENDIX A

TABLE OF SYMBOLS

coefficients of PR 1n a power-series expansion of the
drag

coefficient of sin(ng) in a Fourier series expansion of
3s(x',8,9)/dx' (See eq. (2).)

. N\
coefflcient of <%%§> in a power-series expaension of
9 sin(n6)/s1n(6) (see eqs. (5) and (6).)
3 (XL
/2

wing aspan

co?fficient in a binomisl expansion (See egs. (11) and
12).)

zero-11ft wave drag

gquantities involved in evaluation of the drag
(See egs. (20}, (21), (26), (27), =nd (28).)

(See egs. (24) and (28).)

coefficlent of (B cos @)P in power-series expansion of
An(B,p) (See eqs. (17) and (18).)

body length

length of the longitudinal distribution of second moment
of area (i.e., the length of the proJection of the wing
on the x axis)

free~-gtream Mach number

longitudinal distributlion of aree of the configuration

longitudinal distribution of moment of inertia about the
xz plane (also called the second-moment-of-area distri-

bution)
53 3 FTF IO Wemew o
‘Eiﬁiﬁfﬁﬂnmlzgﬂtj
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Mp(o)

Mp(x)

m,n,p,q

R(x)
S(x',ﬁ:¢)
+(x,¥)

v

Vp

¥

z

(x*,B,0)

vi(x',B8,9)

Y2(x' :ﬁ:CP)

Ya(x) ,YA.(X)

Y(x)

=Ty 27

meximum velue of moment of area of order p

longitudinel distribution of moment of ares of order op
(See eq. (1h).)

dummy integers of sumation

value of y at the wing-body Jjuncture

ares. of the projection on the yz plane of the cross-
sectlonal ares intercepted on the configuretion by the
Mach plane (x',B,0)

thicknesa distribution of the configuration including
wings and bodies

Pree-gtream velocity

pth moment volume (See egs. (33) and (hh).)

Cartesian coordinate in the free-stream direction

Carteslan coordinate in the spanwlse direction

Carteslien coordinate in the thickness dlrectlon

Mach plane which Intersects the x axis at x' and which
has the projection of its normel on the yz plane at an

engle ¢ to the y axis .

velues of y at the polnte of intersection of the configu-
ration edges with the Mach plane (x',B,)

values of y sat the edges of the configurstion

value of .y &t the edge of a configurasition with spanwise
symmetry

speed parsmeter equal to JuE Z 1

varisble related to x' by x' = % cos @

air deneity

angle between the y axis and the proJjection on the y=z
plane of a normal to the Mach plane (x',B,p)
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APPENDTX B

DIMENSIONLESS DRAG FORMULA

In order to take advantage of the decrease in the number of parsme-
ters resulting from slmilarity considerations, and to facilitate calcu-
lations, the quantities defined in the “ANALYSIS" section can be made

dimensionless.

The moment-of-asree distributions defined in equation (14) can be
divided by a thickness %o and the half-gpan b/2 ralsed to the (p + 1)th
power to obtain dimensionless moment distributions defined as .

v

~ Ya(x) _
o) = g () =~ [ ‘( oty ()
'tc<§ 't(<—2- ==¥a\X

Similarly, docuble moments occurring in equation (15) can be replaced by

o = 22 [ /e Tip(x) e (B2)
(g) -1/=2 S

where c¢ 1s the length of thke rrojection of the wing on the x axis.

With these definitions, a dimensionless version of the quantities
Inp of equation (17) can be written as

n-p=-2
- - o k+-2 .
Inp = 2 &npk Mpk(f) » n=-p=-2>0 (B3)
k=0

with the constants €npk defined as

-

—
n-p-k-2 ( niptk !! - L .
(-l) 2 2 2" 2r for even values. (Bh)

(n-p-k-2>, k! pt of (n-p-k)
2 L]

zero otherwise J

€npk = &nkp =

"
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Dimensionless Fourler coefficlients can be defined as
n-2 o :
| _ = (pb )
A, = = E= cos B
n Btob/e An Z Inp 3 P (85)
. p=o SR
- AT
and An® would be written as
on-4
-~ - J
A2 = Z Hn j <%:‘i cos q:) (B6)
J=o
J even
where
N J
Bag= ) DupIn(sw) (27)
p=0 o
D even P erem hince uw&m.«a EP M e
PP A “R.
Dimensionless dreg com‘ponen‘b.g can be defined as
) - _ pax
Pa=n L f Kn2do (28)
2n Jy
gso that
2n-4 3
Saen Y g 33 () ()
=0
J even
wﬁere
1 2%
Ty == f cosdp dp = j even (B10)
2 [o)

Ji
—_—
2
NFSAW
Then the drag is given by

D = nc(igi)z i B (811)

D=2
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where

q = % pve (B12)
The following is a suggested computing procedure:

l. Evaluate the dimensionless double moments ﬁpk for the configu-
ration using equation (B2).

2. Choose a value of 1 equal to the length of the longest equiva-
lent body of revolution and evaluate the Inp's of egua-
tion (B3).

3. Evaluate the ﬁnj's in equation (B7) and the 5n's in equa-
tion (B9).

The dimensionless drag components 52, ﬁs, 54, and go forth, should be

evaluated separately so that the convergence with respect to n can be
watched and computing errors found more easily.

To determine which ﬁpk's are needed for each value of n the sums
can be written out proceeding in the opposite direction from that of the
computing procedure. Thus

Do = oo A

Ds = 3Hszp

- o - b\2 = b\
i1 [HGO + 'Jé.' H42 (%—) + % H44 <‘§Z—> ]

Bs = 5 [ﬁso + & fisa (—19)2 + 3 Hou @2)“} > (B13)

jw]
»
i}

v}
(4]
]

5 = (8bY
25 feo 2>}
57, ete. J

There will be (n - 1) terms in Dn for even n and {(n - 2) terms for
cdd n.
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Equetion (B3) indicates that the quentities f,np with p>n - 2
sre zero so that most of the terms in equations (B6) are zero. Conse-
quently,

_ . A

Hpo = (Lzo)®

Hao = (Ls0)?

Heo = (Lao)2, Heo = 2Lao Lezs ey = (542)2

Foo = (Fs)?,  Fep = Olso fozy  Haox = (Bsa)? > (814)
fleo = (fe0)?, flon = 2lao Tae;  Hea = (Te2)2 + 200 Lee

fo = ofap Taey  fas = Ga0® ~ ©

Hyo, ete. _ J

From equations (B3) and (BL4)

- ~ 2
Log = Moo <%> _ W
- -~ s
Lao = Mo G‘f‘)
Lo = = Moo (7) + 1Mo (7)s Lz = 1Mz (‘f)
~ ~ 3 ~ = D ~ 3

- 1Moz G,i) + 32os <%> P Isp = 96Mp, <%> $(315)
- - 2 - 4 . 8
Foo - S (5 - 18 fex () + e ()

fon = - 48 Fiog (%)2 + 48QH o (;)"'

el

[0}

o}
I

~ -~ 2
Fou - s )
i7o, ete., J
There will be — ; 2 terms in f.np for even values of n sand —— g -1

terms for odd n,
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Since only a small number of terms are involved in ﬁn for n < 6,
these Dn's can be conveniently written cut in terms of ﬁpk 8 as fol-
lows:

Fe - 2 [foo (]
o [ (T
P = 1 { [ oo B + 280 (BT + [0 G
i (5 [rsfeo G JES + 8 [ (BT (7
Be = 5 { |- ador (§) + sos (3)°T ¢ [- 1200 (§)° |
e (o L) - [ QT @) Heom
w6 | [ 5 - e (2 st (8T [0
oz (5)' + saion (5] - wtfao (5 + r60es (32
3o | oo (5 - e G)‘_* sallo, (3 Jeofiao (5] +
[0 (£ 00t (3T} <iﬂ>" * 3l oo 5
o ) Tk (Y8 + 3 e T 8]

&
]

Because of the_small differences between large numbers involved in
the evaluation of Ipp for large values of n, it is probably not feasi-
ble to calculate Dn for values of n as large as may be possible with
the method of reference (1).




NACA RM AS5LT19 33

APPENDIX C

ATTERNATIVE DRAG FORMULA

In reference It it is shown that bodles of revolution exist which
involve only & small number of values of n in the Fourier series expen-
sion of the gradient of the body eree distribution. Similarly, planar
configurations exist which involve only & small number of velues of n
in equation (3) when 17 in equations (1) and (B3) is allowed to vary
with polar angle ¢ and the speed parameter f. One such, a wing of
elliptic plan form and circuler-src sections, was discussed in refer-
ence 6 and was shown to have minimum drag for glven volume with elliptic
plan form,

In this Appendix the drags of a series of wings of elliptic plan form
are derived and the drag of an srbitrary plenar configuration is expressed
in terms of the elliptlc-wing drags for the purpose of including the pre-
dominant effects of spanwise extension of the wing in a small number of
terms of a series,

The double moments (Mpk) of an arbitrary plansr configuration can be
expressed in terms of double moments assocliated with an elliptic plan form
which encloses the arbitrary plan form. Then the drag of the arbitrary
configuration will be equal to the drag of the corresponding combinsation
of elliptic-wing moments.

Equations (B3) and (B5) can be combined to obbain

n-2 n-p-z2

-~ ~ 8b P k+2
Ap = E Z &npk Mpk <_7._ cos (P> <%> (c1)
P=0 k=0 ’

Taking 1 %o be the length of the equivalent body of revolution for an
elliptic plan form of span b; and maximum chord c¢; ylelds

12 = ¢12 + (Bby cos @)2

& G

Bby, 3
1+ (cl cos qJ>
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With the definition

%} = cos O (c2)

it is found that

— P k+2 .
(% cos cp) <Szi> = ginPy cosk+Zy

so ‘that
N-2 n-p=-2z -
An = zz }: énpk MYy sinfa cost2g, i (c3)
P=0C k=0 -
where

b P k+2
My = (= L M
pk <;1 01) Pk

The dimensionless double moments~(ﬁimj of the elliptic lens of
reference 6 can be found by setting Ay = O for n # 2 and A, = cos2«
in equation (C3). Similarly, other wings of elliptic plan form can be
defined by setting An = O for n £ n, and Ap, = cos®q sinPra, Label this
series of wings with the numbers n3 and p;. The corresponding double
moments Mn,p,pk ©of each such wing can be found for even values of nj
and py; from the relation )

N-2 . n-p-2

&npk Mnlplpksinpa cos¥q = Snnlsinpla for all (cs)
p=0 k=0 o values of o and n
P even k even - S

where

J e X for n = nj
®nn, [zero otherwise ] (cé)

Equation (C5) can only be satisfied for values of p; < n: - 2 and it can
be seen that the Mnlplpk's are zero for p<py or k<mny -p -2. In
the following discussion all integers have evan values only.
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To obtaln a drag formula, the ~ﬁ'13k's of the confilgurstion are
expressed as a cambination of the Mp,p,pk's of the form

D ptk+a
M'pk = Z z Knip: Moypapk (cT)

P1=0 ni=p+2

Substitution of this in equation (C3) yields
n-z n-p-2 P ptkta

An = cosZy Z Z Z Z gnpk Knip, Mn,p,pksinPa cosiy

P=0 k=0 py=0 nypit+=

or interchange of the order of summations yields

n-2 n-p-2
Ap = cos®q S-I T KIIJ_PJ. V Z gnpk Mn,p; pxsinPa coske
P:|.=O 1'11=P1+2 P-—P:L k=n; ~p-2

By the use of equation (C5) this becomes

Ap = cosZy Z 2 Eanl ®pn,8inPla
P1=0 Ny3=pii2

Upon completion of the summation with respect to n; the expression

n-~2

An = cosZq, }ﬁ Knp, sinPla (c8)
p1=0

is obtained and can 'be used in the place of equation (C3) in the drag
formule if the Ry, 's can be found. The Rp, 's will be linear func-
tiong of the configura.tion Mpk's of the form

Pp1 n-bP2-2

Knpy = z Z Pnpipsks Mbok, (c9)
Py=0 k=0
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The quantities Enpl can be found from the terms M x ©f the con-
flguration 1f the fnipip.k,'s can be found, From equations (C3) end
(c8) 1t is found that o T

n=2 n-p=2 : n‘_‘_z
Z Z. &npk ﬁlpksinpa, cos¥a = Z Knp,8inPla
p=0 k=0 . pi=0 :

for all « and all functions M'pk, Substituting equation (C9) 1n the
right side of the above equation ylelds

n-2 n-p-2 Nez D=p=2
Z Z gnpk M'pksinpcn cos¥y = Z i Z fnplpk ﬁ'Pksinplu,

=0 k=0 . . . P1=0 P=0 k=pj-p
n-2 n-p-2 kst
= Z Z "ok }E fnplpksinpla.
p=0 k=0 P1=p
or
n-2 n-p-2 k+p
Z Z Mok (gnpk sinPy cosbe - z fnplpksj.npld'->= 0
p=Cc k=0 P1=P

for all a and all functions My, Thus

k+p
gnpksinpcc cos¥qy = Z fnp,pk sinPiq for all o
P1=p '

or expanslion of cos¥e, by the binomial theorem ylelds

+k k+
P P1-D -1_2(- P .
% =
Enpk Z (-J-) | Cpl_pszlnpl?,_— Z Trp, pxeinPfla
Pa= 2 Pi=

for 811 « so that
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=

Pa-p k

2 2
fnppx = (-1) Ch,1-p Bnpk (c10)
2

Substituting equations (12) and (BY) in this equation yilelds

e e mHpHk ),
Tnpipk = (-1)]:L = ( ) 2p+k (/2) ¢ (c11)

(o) ™ )

for even values of the integers.

For odd values of n; and even py the _ﬁnlplpk's are defined by

n-s n-p-2

Z Z Enpk ﬁnlplpksinpa cosk-la = Bpn,sinPla (c1o)
p=0 k=1
p even

and by a similer process

n-s
An = cos3q Z KnpsinPa - (c13)
=0 '
n=pPo-2
Knp, = Z Z fnpipske Mpoks (c1k)

P2=0  kp=pi-Pzt1
Pz even ks odd

and
- k-1
PR =
fopipk = (-1) Cp,-p 8npk (c15)

2

for odd values of n and k.
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Since the dimenslionless drag components are glven by

ﬁn='él—f n E,%dp
b

integrals of the type

J J
2 fzrt <.§(%L cos <p> o 1 faﬂ (% cos Q

2n +4 4 271 dep
o [1 + (BPy (og cp>2jlj?' © [1 + (% cos tp)zJ%E

C1

are encountered and have been evaluated by means of a method of residue
integration and differentiation with respect to parameters.

In summary, the drag of an arbitrary closed planar configuration with
spanwlse gymmetry can be evaluated by means of the following formuylas:

D= nq <to %)2 i Dy (c16)

n=2
[ 2n-4 . Lo -
n Z ﬁnj g3 I <-ib%> for even n
J=0 '
J even
Dy = (c17)
on-8
n En,j Jj Q-j Ecbf‘h for odd n
J=o0
J even |
Jj = — for even J (c18)
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(

R IDENTTAT,

J 2
Bby 2_(Bbx
C:L) [l * J+2 Cl)

(J+2§’( J+k) <%>4:|

D
Qy ,%J-z.):

P even

-

B

n-ps=-2

ko=p-p2
ks even

n-po-2

k2=p —p2+l
ko, odd

@

ki

Z Knp Kn(3-p)
p=0

even

fnppok Mook,

Tnppoke Mpok,

for even n

for odd n

39

(c19)

(c20)

(c21)

(ce2)
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ko
npatka), (.122):
( )2:2_;52:5 2 o{patks) 2
-1 T T
(n-p ;k _2>! Potkot (ka-gﬂ;?):(l-gg)s
for even n and even kg
foppoks = (c23)
n+potko ko-1),
( )E:R%‘a:ﬁ < 2 )’ o{P=rka) ( z J°
-1 T
<n-13g'kg"2>: patkas (kg"P"'Pg' >.<9-2P2>.
2 -3 2 L] L]
for odd n and odd ko
Lffro otherwise ]
~ ~ b Po e k2+2 T
Mipoks = Mpgky ('b_' (’é—,)
(c2k)
ﬁ 2 1 C/2 y4(x) ?
NOMIGERTRES

In equation (C2%) t(x,y) is the configuration thickness distribution,

b, end c; are the span and maximum chord, respectively, of an ellipse
which completely encloses the configuration, b 1is the wing span, and c¢
is the streamwise length of the wing.

Fa
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: The first five values of ﬁn are given by

) Dz = 2(Ho0) 2 Io (ﬂ—bl> )
ci
e st o ()
' By = ] (10f0s - B0 To (B22) + (e, - o) (1t -
la&~'02) Ig (.B;bi + i (la‘z'go - la.{"oa)z I4 &)
Ci 8 Ci
Ds = 5[(332'03 - 18W;)% qg %) + (32Mgg - 12, ) (932'21: -
03) Qo (B'lu) (96M'n1 - 32M c,3)2 Qa (ﬁﬂ)}
i >(cas)
i Dg = 6 {(80M'04 - LM, + Moo)?® To <%>+ (8o, - WBM'go +
Foo) (180lzp - 16000, + Woifoa - Wiifzo) 1T (B
1
%[a(soﬁ'o‘ - 48, + 3Mloo) (B0MG, - 4BOM',, + SOMi.) +
(48022 - 160G, + Moz - MBH'20)?T I, (%)”
%(haoﬁ'zz - 160Mpe + L8M'on - LBM'ao) (BOMoe - L48OM-m +
80 ,) Te (%) + % (8 oy - 4BOM'2z + 80M'20)% TIg (%)b

The convergence wilth respect to n is best when the smallest possi-
ble ellipse is used. The theoretical drag curves in sketch (e) were cal-
culated by dividing the configuration into parts of short, long, and
Intermediate length so that smaller ellipses could be used for the shorter
parts. The drags of these three parts and thelr interactions were calcu-
lated using values of n up to 6 in the formulas of this Appendix. The
body moments in the region of the body cutouts were found to be important

‘ and were taken into account using a quasi-cylindrical approximation to
- find an equlvalent planar system neglecting induced camber effects.
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